CISCO SYSTEMS

Storage Area and IP Networks Integration

Yolanda Lamilla ylamilla@cisco.com

Agenda

Cisco.com

- Brieft Introduction to Storage Networking
- Intelligent Storage services:

Virtual SAN (VSAN)

Multiprotocol: iSCSI and FCIP

The benefits of IP storage

Storage Networking: Where is the Network?

The Storage Evolution

7451 02 2003 c1

Storage Networking Evolution

SAN Islands

- Today many SAN environments consist of numerous islands of connectivity
- Islands are physically isolated environments consisting of one or more interconnected switches
- Each island is typically dedicated to a single or multiple related applications
- Each island may be independently managed by a separate admin team
- Strict isolation from faults achieved through physical isolation

Intelligent Network Services—Virtual SANs (VSANs)

- A Virtual SAN (VSAN) provides a method to allocate ports within a physical fabric to create virtual fabrics
- Analogous to VLANs in Ethernet
- Virtual fabrics created from larger costeffective redundant physical fabric
- Reduces wasted ports of island approach
- Fabric events are isolated per VSAN maintains isolation for HA
- Hardware-based isolation traffic is explicitly tagged across inter-switch links with VSAN membership info
- Statistics can be gathered per VSAN

Two Primary Functions of VSANs

The Virtual SANs feature consists of two primary functions:

 Hardware-based isolation of tagged traffic belonging to different VSANs

No special drivers or configuration required for end nodes (hosts, disks, etc)

Traffic tagged at Fx_Port ingress and carried across EISL (enhanced ISL) links between switches

2. Create independent instance of Fibre Channel services for each newly created VSAN – services include:

Zone server, name server, management server, principle switch election, etc.

Each service runs independently and is managed/configured independently

VSANs and Zones - Complimentary

Cisco.com

Virtual SANs and fabric zoning are very complimentary

- Hierarchical relationship –
 First assign physical ports to VSANs
 Then configure independent zones per VSAN
- VSANs divide the physical infrastructure
- Zones provide added security and allow sharing of device ports
- VSANs provide traffic statistics
- VSANs only changed when ports needed per virtual fabric
- Zones can change frequently (eg. backup)
- Ports are added/removed nondisruptively to VSANs

Relationship of VSANs to Zones

IP Storage Networking

Cisco.com

- IP storage networking provides solution to carry storage traffic within IP
- Uses TCP, a reliable transport for delivery
- Can be used for local data center and long haul applications
- Two primary protocols:

iSCSI¹ – IP-SCSI - used to transport SCSI CDBs and data within TCP/IP connections IP **TCP** iSCSI SCSI

FCIP – Fibre-Channel-over-IP – used to transport Fibre Channel frames within TCP/IP connections

Data

FCIP and iSCSI – Complementary Standards

- FCIP: SAN-to-SAN over IP
- iSCSI: Host to Storage over IP

FCIP

Cisco.com

FCIP Gateways perform Fibre Channel encapsulation process into IP Packets and reverse that process at the other end

FC Switches connect to the FCIP gateways through an E_Port for SAN fabric extension to remote location

A tunnel connection is set up through the existing IP network routers and switches across LAN/WAN/MAN

Potential FCIP Environments

- Wire-rate (1Gbps)
- Relatively low latency
- Sync or Async replication
- Metro Ethernet offers cost effective solution
- Typical OC3 / OC12
- Relatively low latency
- Mainly asynchronous
- Suitable for some synchronous apps
- Low speed (T1 DS3)
- Higher latency
- Longer distance
- Mainly asynchronous

iSCSI Architectural Model

iSCSI Solution Architecture

Case study- before iSCSI

Cisco.com

Before iSCSI:

2 separate networks: IP and Fibre Channel

Case study- after iSCSI

Cisco.com

After iSCSI: IP Storage All servers participate in the SAN

Benefits of IP Storage

Cisco.com

 Simplifies Enterprise-Scale Business Continuance

Enables backup, remote replication, and disaster recovery over WAN distances using open-standard FCIP tunneling.

Lowers Storage TCO for Midrange Servers

Enables consolidation of midrange server storage using industry standard iSCSI protocol

Provides midrange servers access to SAN-based backup and business continuance services

Simplifies Management of Multi-Protocol SANs

Enables unified SAN services and management independent of the protocol being used

